

# SGM330A Quad, Wide-Bandwidth SPDT Video Analog Switch

## GENERAL DESCRIPTION

The SGM330A is a quad, bidirectional, single-pole/double-throw (SPDT) CMOS video analog switch (Mux/DeMux) designed to operate from a single 2.7V to 5.5V power supply. This 2-channel multiplexer/demultiplexer is recommended for both RGB and composite video switching applications. The video switch can be driven from a current output RAMDAC or voltage output composite video source.

Wide bandwidth (500MHz), low on-resistance (12 $\Omega$ ), and low crosstalk make it suitable for high-frequency and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today.

The SGM330A offers a high-performance, low-cost solution to switch between video sources. It is specified -40°C to +85°C temperature range. The SGM330A is available in Green SOIC-16, TSSOP-16 and SSOP-16 packages.

## **FEATURES**

• Wide Bandwidth: 500MHz

• Low On-Resistance: 12Ω (TYP)

• Low Crosstalk: -60dB at 10MHz (TYP)

• Power Supply Voltage Range: 2.7V to 5.5V

• Fast Switching Time

• Rail-to-Rail Operation

Typical Power Consumption (I<sub>CC</sub> = 0.1μA)

• TTL/CMOS Compatible

• Micro Size Packages

SOIC-16

TSSOP-16

SSOP-16

#### **APPLICATIONS**

Personal Video Recorders

Terrestrial Set-Top Boxes

Hard Disk Recorders

**DVD Players** 

**Game Consoles** 

Digital VCRs

**Desktop Video Editors** 

Audio and Video Switching

## PACKAGE/ORDERING INFORMATION

| MODEL   | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING       | PACKING<br>OPTION   |
|---------|------------------------|-----------------------------------|--------------------|--------------------------|---------------------|
|         | SOIC-16                | -40°C to +85°C                    | SGM330A-YS/TR      | SGM330A-YS<br>XXXXX      | Tape and Reel, 2500 |
| SGM330A | SSOP-16                | -40°C to +85°C                    | SGM330A-YQS/TR     | SGM330A<br>-YQS<br>XXXXX | Tape and Reel, 3000 |
|         | TSSOP-16               | -40°C to +85°C                    | SGM330A-YTS/TR     | SGM330A<br>-YTS<br>XXXXX | Tape and Reel, 3000 |

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### ABSOLUTE MAXIMUM RATINGS

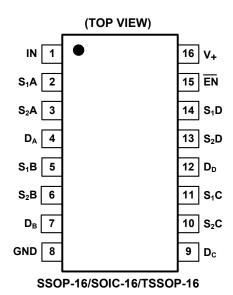
| Supply Voltage to Ground Potential (Inputs & V <sub>+</sub> only) |
|-------------------------------------------------------------------|
| -0.3V to 6V                                                       |
| Supply Voltage to Ground Potential (Outputs & D only)             |
| -0.3V to 6V                                                       |
| DC Input Voltage0.3V to 6V                                        |
| Package Thermal Resistance @ T <sub>A</sub> = +25°C               |
| SOIC-16, θ <sub>JA</sub> 82°C/W                                   |
| TSSOP-16, θ <sub>JA</sub>                                         |
| SSOP-16, θ <sub>JA</sub> 103°C/W                                  |
| Junction Temperature+150°C                                        |
| Storage Temperature Range65°C to +150°C                           |
| Lead Temperature (Soldering, 10s)+260°C                           |
| ESD Susceptibility                                                |
| HBM8000V                                                          |
| MM400V                                                            |

#### RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range .....-40°C to +85°C

#### **OVERSTRESS CAUTION**

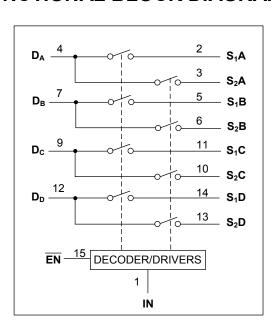
Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### **DISCLAIMER**

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.


## **PIN CONFIGURATION**



## **PIN DESCRIPTION**

| PIN                           | NAME                                                                                                                                             | FUNCTION             |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1                             | IN                                                                                                                                               | Select Input.        |
| 2, 5, 11, 14,<br>3, 6, 10, 13 | S <sub>1</sub> A, S <sub>1</sub> B, S <sub>1</sub> C, S <sub>1</sub> D<br>S <sub>2</sub> A, S <sub>2</sub> B, S <sub>2</sub> C, S <sub>2</sub> D | Analog Video I/O.    |
| 4, 7, 9, 12                   | $D_A$ , $D_B$ , $D_C$ , $D_D$                                                                                                                    | Analog Video I/O.    |
| 8                             | GND                                                                                                                                              | Ground.              |
| 15                            | ĒN                                                                                                                                               | Switch-Enable Input. |
| 16                            | V <sub>+</sub>                                                                                                                                   | Power Supply.        |

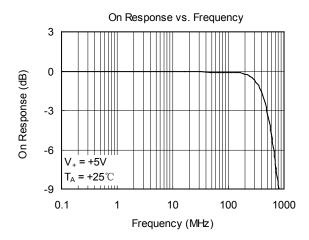
## **FUNCTIONAL BLOCK DIAGRAM**

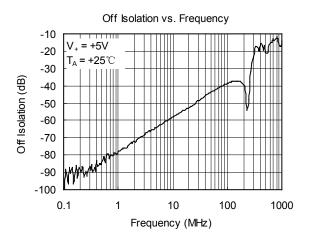


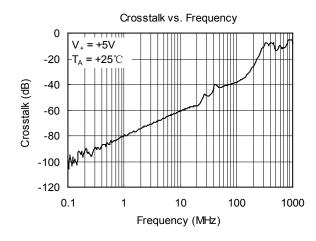
## **FUNCTION TABLE**

| EN | IN | ON SWITCH                                                              |
|----|----|------------------------------------------------------------------------|
| 0  | 0  | S <sub>1</sub> A, S <sub>1</sub> B, S <sub>1</sub> C, S <sub>1</sub> D |
| 0  | 1  | S <sub>2</sub> A, S <sub>2</sub> B, S <sub>2</sub> C, S <sub>2</sub> D |
| 1  | Х  | Disabled                                                               |

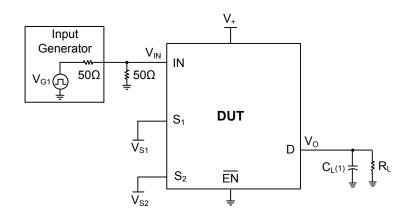
# **PARAMETER DEFINITIONS**


| PARAMETER             | DESCRIPTION                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ron                   | Resistance between source and drain with switch in the ON state.                                                                                                                                                               |
| Io                    | Output leakage current measured at S1, S2, and D with the switch OFF.                                                                                                                                                          |
| V <sub>IN</sub>       | Digital voltage at the IN pin that selects between S1 and S2 analog inputs.                                                                                                                                                    |
| Vı                    | Voltage applied to the D or S1, S2 pins when D or S1, S2 is the switch input.                                                                                                                                                  |
| V <sub>EN</sub>       | A voltage that ENABLES the chip.                                                                                                                                                                                               |
| C <sub>IN</sub>       | Capacitance at the digital inputs.                                                                                                                                                                                             |
| C <sub>OFF</sub>      | Capacitance at analog I/O (S1, S2, D) with switch OFF.                                                                                                                                                                         |
| C <sub>ON</sub>       | Capacitance at analog I/O (S1, S2, D) with switch ON.                                                                                                                                                                          |
| V <sub>IH</sub>       | Minimum input voltage for logic HIGH.                                                                                                                                                                                          |
| V <sub>IL</sub>       | Minimum input voltage for logic LOW.                                                                                                                                                                                           |
| I <sub>IH (IIL)</sub> | Input current of the digital input.                                                                                                                                                                                            |
| ton                   | Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON.                                                                                                              |
| toff                  | Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF.                                                                                                             |
| BW                    | Frequency response of the switch in the ON state measured at 3dB down.                                                                                                                                                         |
| X <sub>TALK</sub>     | Is an unwanted signal coupled from channel to channel. Measured in -dB. X <sub>TALK</sub> = 20LOG V <sub>OUT</sub> /V <sub>IN</sub> . This is non-adjacent crosstalk.                                                          |
| $D_G$                 | Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58MHz. |
| D <sub>P</sub>        | Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58MHz.     |
| O <sub>IRR</sub>      | Off isolation is the resistance (measured in -dB) between the input and output with the switch off (NO).                                                                                                                       |

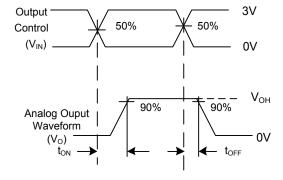

# **ELECTRICAL CHARACTERISTICS**


(At  $V_+$  = +5V,  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                           | SYMBOL            | CONDITIONS                                                              | MIN | TYP  | MAX            | UNITS |
|-------------------------------------|-------------------|-------------------------------------------------------------------------|-----|------|----------------|-------|
| Input Voltage                       | V <sub>IN</sub>   |                                                                         | 0   |      | V <sub>+</sub> | ٧     |
| DC CHARACTERISTICS                  |                   |                                                                         |     |      |                |       |
| On-Resistance                       | R <sub>ON</sub>   | $0V \le V_{S1} \text{ or } V_{S2} \le V_+, I_D = 13\text{mA}$           |     | 12   | 18             | Ω     |
| Input High Voltage                  | V <sub>IH</sub>   |                                                                         | 2   |      |                | V     |
| Input Low Voltage                   | V <sub>IL</sub>   |                                                                         |     |      | 0.6            | V     |
| Input High Current                  | I <sub>IH</sub>   | $V_+$ = 5.5V, $V_{IN}$ and $V_{EN}$ = $V_+$                             |     |      | ±1             | μA    |
| Input Low Current                   | I <sub>IL</sub>   | $V_{+}$ = 5.5V, $V_{IN}$ and $V_{EN}$ = 0V                              |     |      | ±1             | μA    |
| Analog Output Leakage Current       | Io                | $V_{+} = 5.5V$ , $V_{S1}$ or $V_{S2} = 3.3V/0.3V$ , $V_{D} = 0.3V/3.3V$ |     |      | ±1             | μA    |
| Clamp Diode Voltage                 | V <sub>IK</sub>   | I <sub>IN</sub> = -18mA                                                 |     | -1   |                | V     |
| DYNAMIC CHARACTERISTICS             |                   |                                                                         |     |      |                |       |
| Turn-On Time                        | t <sub>ON</sub>   | $R_L = 75\Omega$ , $C_L = 20pF$ , See Figure 1                          |     | 25   |                | ns    |
| Turn-Off Time                       | t <sub>OFF</sub>  | $R_L$ = 75 $\Omega$ , $C_L$ = 20pF, See Figure 1                        |     | 13   |                | ns    |
| Off Isolation                       | O <sub>IRR</sub>  | $R_L$ = 150 $\Omega$ , f = 10MHz, See Figure 5                          |     | -58  |                | dB    |
| Channel-to-Channel Crosstalk        | X <sub>TALK</sub> | $R_{IN}$ = 10 $\Omega$ , $R_L$ = 150 $\Omega$ , f = 10MHz, See Figure 4 |     | -60  |                | dB    |
| -3dB Bandwidth                      | BW                | $R_L$ = 150 $\Omega$ , See Figure 3                                     |     | 500  |                | MHz   |
| Input/Enable Capacitance            | C <sub>IN</sub>   | f = 1MHz                                                                |     | 4    |                | pF    |
| Switch OFF Capacitance              | C <sub>OFF</sub>  | f = 1MHz                                                                |     | 4    |                | pF    |
| Switch ON Capacitance               | C <sub>ON</sub>   | f = 1MHz                                                                |     | 8    |                | pF    |
| Differential Gain                   | $D_G$             | $R_L$ = 150 $\Omega$ , f = 3.58MHz, See Figure 2                        |     | 0.5  |                | %     |
| Differential Phase                  | D <sub>P</sub>    | $R_L$ = 150 $\Omega$ , f = 3.58MHz, See Figure 2                        |     | 0.03 |                | ۰     |
| POWER REQUIREMENTS                  |                   |                                                                         |     |      |                |       |
| Power Supply Range                  | V <sub>+</sub>    |                                                                         | 2.7 |      | 5.5            | V     |
| Power Supply Current                | I <sub>cc</sub>   | $V_{+}$ = +5.5V, $V_{IN}$ and $V_{EN}$ = 5V/0V                          |     | 0.1  | 20             | μA    |
| Supply Current per Input @ TTL HIGH | $\Delta_{ICC}$    | $V_{+} = +5.5V$ , $V_{IN}$ or $V_{EN} = 3.4V$                           |     |      | 300            | μΑ    |


# **TYPICAL PERFORMANCE CHARACTERISTICS**








## **TEST CIRCUITS**



| Test            | V+      | RL  | CL   | V <sub>S1</sub> | V <sub>S2</sub> |
|-----------------|---------|-----|------|-----------------|-----------------|
|                 | 5V±0.5V | 75Ω | 20pF | GND             | 3V              |
| t <sub>ON</sub> | 5V±0.5V | 75Ω | 20pF | 3V              | GND             |
| 4               | 5V±0.5V | 75Ω | 20pF | GND             | 3V              |
| toff            | 5V±0.5V | 75Ω | 20pF | 3V              | GND             |



 $\label{eq:voltage} \begin{array}{c} \text{VOLTAGE WAVEFORMS} \\ t_{\text{ON}} \text{ AND } t_{\text{OFF}} \text{ TIMES} \end{array}$ 

#### NOTES:

- 1.  $C_L$  includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10MHz,  $Z_0$  = 50 $\Omega$ ,  $t_r \leq$  2.5ns,  $t_f \leq$  2.5ns.
- 3. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Test Circuit for Voltage Waveform and Switch Time

# **TEST CIRCUITS (continued)**

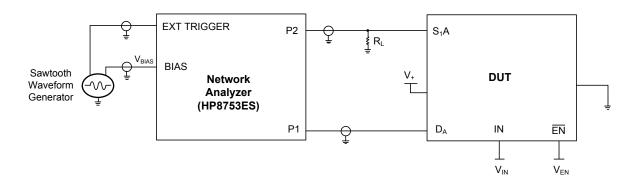
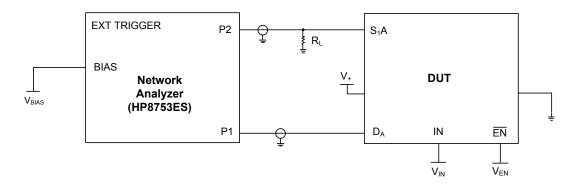
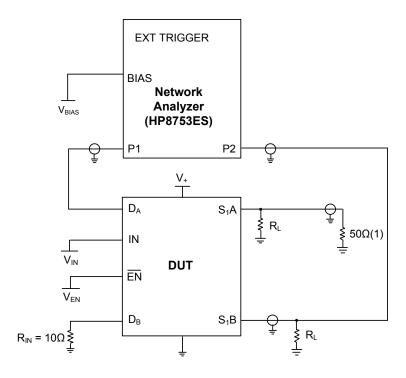



Figure 2. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase are measured at the output of the ON channel. For example, when  $V_{IN}$  = 0,  $V_{EN}$  = 0, and  $D_A$  is the input, the output is measured at  $S_1A_1$ 





Figure 3. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when  $V_{IN} = 0$ ,  $V_{EN} = 0$ , and  $D_A$  is the input, the output is measured at  $S_1A$ . All unused analog I/O ports are left open.

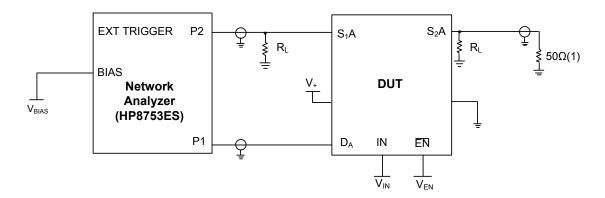
#### **HP8753ES Setup**

Average = 4 RBW = 3Hz  $V_{BIAS}$  = 1/2  $V_{+}$ ST = 2s P1 = 0dBM

# **TEST CIRCUITS (continued)**



NOTE: 1. A  $50\Omega$  termination resistor is needed for the network analyzer.


Figure 4. Test Circuit for Crosstalk (XTALK)

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when  $V_{IN}$  = 0,  $V_{EN}$  = 0, and  $D_A$  is the input, the output is measured at  $S_1B$ .

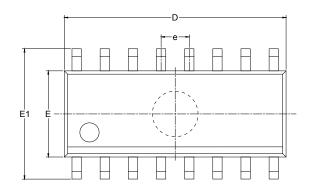
#### **HP8753ES Setup**

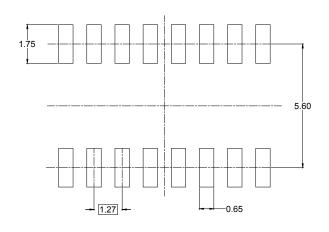
Average = 4 RBW = 3kHz  $V_{BIAS} = 1/2 V_{+}$ ST = 2sP1 = 0dBM

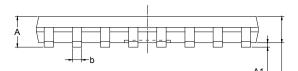
# **TEST CIRCUITS (continued)**

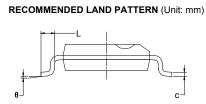


NOTE: 1. A  $50\Omega$  termination resistor is needed for the network analyzer.


Figure 5. Test Circuit for Off Isolation (O<sub>IRR</sub>)

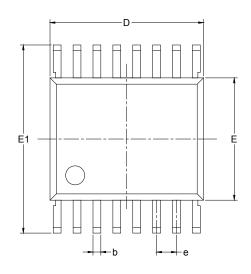

Off isolation is measured at the output of the OFF channel. For example, when  $V_{IN} = V_+$ ,  $V_{EN} = 0$ , and  $D_A$  is the input, the output is measured at  $S_1A$ . All unused analog input (D) ports are left open.

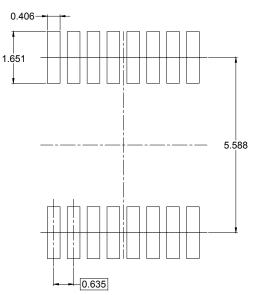

#### **HP8753ES Setup**


Average = 4 RBW = 3kHz  $V_{BIAS} = 1/2 V_{+}$ ST = 2sP1 = 0dBM

# PACKAGE OUTLINE DIMENSIONS SOIC-16

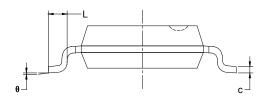




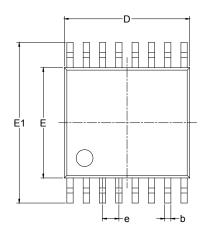


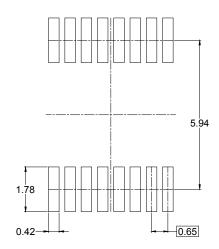

| Symbol | _     | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
|        | MIN   | MAX MIN          |                         | MAX   |  |
| Α      | 1.350 | 1.750            | 0.053                   | 0.069 |  |
| A1     | 0.100 | 0.250            | 0.004                   | 0.010 |  |
| A2     | 1.350 | 1.550            | 0.053                   | 0.061 |  |
| b      | 0.330 | 0.510            | 0.013                   | 0.020 |  |
| С      | 0.170 | 0.250            | 0.006                   | 0.010 |  |
| D      | 9.800 | 10.200           | 0.386                   | 0.402 |  |
| E      | 3.800 | 4.000            | 0.150                   | 0.157 |  |
| E1     | 5.800 | 6.200            | 0.228                   | 0.244 |  |
| е      | 1.27  | 7 BSC 0.050      |                         | BSC   |  |
| L      | 0.400 | 1.270            | 0.016                   | 0.050 |  |
| θ      | 0°    | 8°               | 0°                      | 8°    |  |


# PACKAGE OUTLINE DIMENSIONS SSOP-16

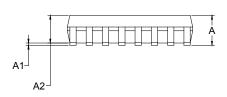


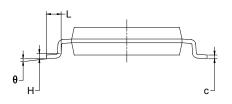



RECOMMENDED LAND PATTERN (Unit: mm)





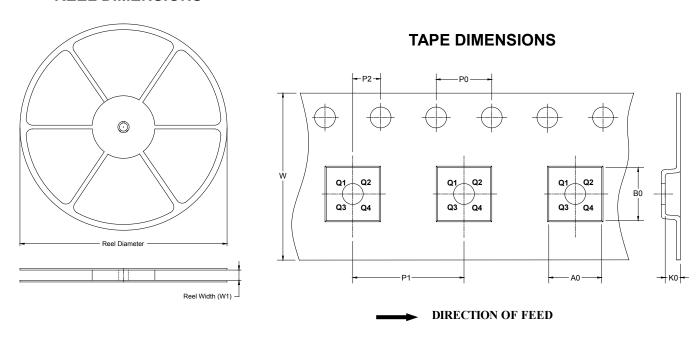


| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
|        | MIN   | MAX              | MIN                     | MAX   |  |
| А      | 1.350 | 1.750            | 0.053                   | 0.069 |  |
| A1     | 0.100 | 0.250            | 0.004                   | 0.010 |  |
| A2     | 1.350 | 1.550            | 0.053                   | 0.061 |  |
| b      | 0.200 | 0.300            | 0.008                   | 0.012 |  |
| С      | 0.170 | 0.250            | 0.007                   | 0.010 |  |
| D      | 4.700 | 5.100            | 0.185                   | 0.200 |  |
| E      | 3.800 | 4.000            | 0.150                   | 0.157 |  |
| E1     | 5.800 | 6.200            | 0.228                   | 0.244 |  |
| е      | 0.635 | 0.635 BSC        |                         | BSC   |  |
| L      | 0.400 | 1.270            | 0.016                   | 0.050 |  |
| θ      | 0°    | 8°               | 0°                      | 8°    |  |


# PACKAGE OUTLINE DIMENSIONS TSSOP-16





RECOMMENDED LAND PATTERN (Unit: mm)

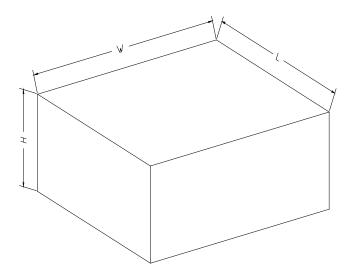





| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
| ,      | MIN   | MIN MAX          |                         | MAX   |  |
| Α      |       | 1.200            |                         | 0.047 |  |
| A1     | 0.050 | 0.150            | 0.002                   | 0.006 |  |
| A2     | 0.800 | 1.050            | 0.031                   | 0.041 |  |
| b      | 0.190 | 0.300            | 0.007                   | 0.012 |  |
| С      | 0.090 | 0.200            | 0.004                   | 0.008 |  |
| D      | 4.860 | 5.100            | 0.191                   | 0.201 |  |
| E      | 4.300 | 4.500            | 0.169                   | 0.177 |  |
| E1     | 6.200 | 6.600            | 0.244                   | 0.260 |  |
| е      | 0.650 | BSC              | 0.026                   | BSC   |  |
| L      | 0.500 | 0.700            | 0.02                    | 0.028 |  |
| Н      | 0.25  | TYP              | 0.01                    | TYP   |  |
| θ      | 1°    | 7°               | 1°                      | 7°    |  |

## TAPE AND REEL INFORMATION

## **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SOIC-16      | 13"              | 16.4                     | 6.50       | 10.30      | 2.10       | 4.0        | 8.0        | 2.0        | 16.0      | Q1               |
| SSOP-16      | 13"              | 12.4                     | 6.40       | 5.40       | 2.10       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |
| TSSOP-16     | 13"              | 12.4                     | 6.90       | 5.60       | 1.20       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |

## **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

## **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |
|-----------|----------------|---------------|----------------|--------------|
| 13"       | 386            | 280           | 370            | 5            |